
Exposing Private Information from
Side-Channel Leaks in your Browser

by Tom Van Goethem 
 

PhD researcher @ imec - DistriNet, University of Leuven

Compression-based Attacks

“Commonly-used lossless compression algorithms leak
information about the data being compressed, in the size
of the compressor output.”!
 J. Kelsey - "Compression and Information Leakage of Plaintext" (2002)

2

Compression-based Attacks

• To reduce bandwidth, most websites use gzip
compression!

• As a direct result, they may become susceptible to
compression-based attacks!
• Requirement 1: attacker input is on same page as secret!
• Requirement 2: attacker can determine exact (compressed)

response size

3

GET /search?q=value

<title>Results for: value</title>
....
<input name="csrftoken" value="s3cr3t" type="hidden">

<title>Results for: value</title>
....
<input name="csrftoken" @(5,218)="s3cr3t" type="hidden">

23,844 bytes

gzip

GET /search?q=value="a

<title>Results for: value="a</title>
....
<input name="csrftoken" value="s3cr3t" type="hidden">

<title>Results for: value="a</title>
....
<input name="csrftoken" @(7,221)s3cr3t" type="hidden">

23,845 bytes

gzip

GET /search?q=value="s

<title>Results for: value="s</title>
....
<input name="csrftoken" value="s3cr3t" type="hidden">

<title>Results for: value="s</title>
....
<input name="csrftoken" @(8,221)3cr3t" type="hidden">

23,844 bytes

gzip

GET /search?q=value="sa

<title>Results for: value="sa</title>
....
<input name="csrftoken" value="s3cr3t" type="hidden">

<title>Results for: value="sa</title>
....
<input name="csrftoken" @(8,222)3cr3t" type="hidden">

23,845 bytes

gzip

GET /search?q=value="s3

<title>Results for: value="s3</title>
....
<input name="csrftoken" value="s3cr3t" type="hidden">

<title>Results for: value="s3</title>
....
<input name="csrftoken" @(9,222)cr3t" type="hidden">

23,844 bytes

gzip

Compression-based attacks
• Requirements for an attacker to extract secret

information from a web page!
• gzip compression enabled!

• present on most websites!
• attacker-controlled input on the same page as the secret !

• application-specific!
• attacker only needs a single page that meets this requirement!

• determine exact response size (compressed)

9

Determine exact response size
• Man-in-the-middle!

• Trivial!

• Sniff (encrypted) Wi-Fi packets!
• Channel-based man-in-the-middle attack!

• Browser-based side channel attack!
• Browser storage!
• TCP windows + browser timing APIs

10

Browser storage side-channel

• Cache API introduces programmable cache!
• Part of service worker API!
• Allows web developers to place *any* resource in website's cache!

• Including authenticated cross-origin responses!

• To prevent one party to take up all available space,
the Cache API is subject to quota restrictions!
• Main cause of the side-channel leak

11

https://h4x.com

https://bank.com

h4x.com

https://h4x.com

https://bank.com

h4x.com

https://h4x.com

https://bank.com

h4x.com

Cache Quota

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

https://h4x.com

https://bank.com

h4x.com

x
y

Cache Quota

https://h4x.com

https://bank.com

h4x.com

x
y

Cache Quota

x - y = exact resource size

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

Cache Quota

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

Cache Quota

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

getEstimate()

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

getEstimate()

x bytes

Quota Management/Storage API

https://h4x.com

https://bank.com

h4x.com

x

Cache Quota

x = exact resource size

getEstimate()

x bytes

• Exploiting Cache API/Quota Mgmt, we can find
exact response size!
• But... *after* decompression → insufficient to launch

compression-based attacks!

• Cache API stores uncompressed response +
headers!
• Perhaps we can abuse something there?

15

GET /search?q=foobar HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9102
...
!

<!DOCTYPE html><html>
<title>Results for: foobar</title> 
...

GET /search?q=foobar HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9102
...
!

<!DOCTYPE html><html>
<title>Results for: foobar</title> 
...

response + headers + meta = 10,703 bytes

GET /search?q=foobars HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9103
...
!

<!DOCTYPE html><html>
<title>Results for: foobars</title> 
...

GET /search?q=foobars HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9103
...
!

<!DOCTYPE html><html>
<title>Results for: foobars</title> 
...

response + headers + meta = 10,704 bytes

GET /search?q={897 bytes}foobar HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9999
...
!

<!DOCTYPE html><html>
<title>Results for: {897 bytes}foobar</title> 
...

GET /search?q={897 bytes}foobar HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 9999
...
!

<!DOCTYPE html><html>
<title>Results for: {897 bytes}foobar</title> 
...

response + headers + meta = 11,600 bytes

GET /search?q={897 bytes}foobars HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 10000
...
!

<!DOCTYPE html><html>
<title>Results for: {897 bytes}foobars</title> 
...

GET /search?q={897 bytes}foobars HTTP/1.1
Host: example.com
User-Agent: Web Browser

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 10000
...
!

<!DOCTYPE html><html>
<title>Results for: {897 bytes}foobars</title> 
...

response + headers + meta = 11,602 bytes

GET param length Content-Length Cache size

6 9,102 10,703

7 9,103 10,704

903 9,999 11,600

904 10,000 11,602

• Exploiting Cache API/Quota Mgmt, we can find
exact response size!
• But... *after* decompression → insufficient to launch

compression-based attacks!

• Cache API stores uncompressed response +
headers!
• Perhaps we can abuse something there?!
• → YES! The Content-Length header

21

TCP windows + browser timing APIs
• HTTP responses are sent TCP windows!

• At most, 10 unacknowledged TCP packets can be sent from server to client!

• Resources that do not fit in one TCP window require an
additional round trip!
• If we can measure this, we can determine if response fits in a single TCP

window, or required multiple!

• ... at a certain tipping point for the response size, an
additional round trip is needed

22

TCP windows + browser timing APIs

• We can use Fetch API to make authenticated requests!

!

!

• The returned Promise resolves when the browser
receives the first byte of the response

23

fetch('https://bank.com/resource',
 {mode: "no-cors", credentials:"include"})

TCP windows + browser timing APIs

• Using the Performance API, we can measure when the
response was completely downloaded!

!

!

• This allows us to create a timeline of the response

24

performance.getEntries()[-1].responseEnd

time

fetch()

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

responseEnd

T1 T2

Fetching small resource: T2 - T1 is very small

26

time

fetch()

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

ACK sent

second TCP 
window sent

second TCP 
window received

responseEnd

T1 T2

Fetching large resource: T2 - T1 is round-trip time

• Measuring time difference between resolution of
Promise and responseEnd leaks information on the
number of round trips!
• 1 round trip (= 1 TCP window): < 5ms!
• 2+ round trips (= multiple TCP windows): < 5ms + RTT

27

• Finding the exact size with similar technique as
Cache/Quota side-channel attack!
• Add reflected content until tipping point is reached!

• For larger resources: arbitrarily increase TCP
window by first sending a request to another
resource!
• For each received ACK, TCP window is increased by 1

28

Defence methods
• Disable compression!

• Bandwidth usage +++!

• Do not compress secrets!
• How to determine what is secret information?!
• Work in progress!

• SameSite cookies!
• Cookies are not attached to third-party requests!

• Disable third-party cookies!
• Affects UX on some websites

31

Conclusion
• Compression-based attacks allow attackers to

extract sensitive information (e.g. CSRF tokens)!

• Information leaked by browser allows determining
exact response size!
• Cache API + Quota!
• Response timing + TCP windows!

• Very few websites defend against these attacks
32

Questions?

33

@tomvangoethem 
 

tom.vangoethem@cs.kuleuven.be

