Introduction to More Advanced Steganography

John Ortiz Crucial Security Inc. San Antonio John.Ortiz@Harris.com 210 977-6615

Can YOU See the Difference?

• Which one of these pictures has a secret message?

- One of them contains 74108 bytes of secret data.
- The original is 574,421 bytes (new size 450,072)
- That's 16.47% data hiding capacity

A Closer Look – Picture #1

A Closer Look – Picture #2

Who's Hiding in There?

Agenda

- Attention Getter
- A little bit about me
- Overview
- Hiding in the Least Significant Bit
- Advanced Techniques for Geeks
 - Bit Plane Complexity Segmentation (BPCS)
 - Hiding in Compressed Jpeg Images
- Questions/Comments/Complaints

About Me – the 20 min Version

• I'm a GeeK

11/17/2011

Enough About Me

Overview

Overview

- Information Hiding is a branch of computer science that deals with concealing the existence of a message
 - It is related to cryptography whose intent is to render messages unreadable, except by the intended recipients
- It employs technologies from numerous science disciplines:
 - Digital Signal Processing (Images, Audio, Video)
 - Cryptography
 - Information Theory\Coding Theory
 - Data Compression
 - Discrete Math
 - Data Networks
 - Human Visual/Auditory perception

Overview

- There are four primary sub-disciplines of Information Hiding
 - Steganography
 - Watermarking
 - Covert Channels
 - Anonymity

Goals of Steganography

 Steganography's primary goal is to hide data within some other data such that the hidden data cannot be detected <u>even if it is</u> <u>being sought</u>

Goals of Steganography

Security

Perception, automated detection, levels of failure

- Capacity
 - Maximize amount of hidden data
 - Tradeoff with security/robustness
- Robustness
 - Resilience to stego file alterations

Less Advanced Steganography

Basic Hiding

We're Gonna Hide This:

In This:

Then That In This:

Least Significant Bits

- Substitution: Replace information in the cover with the stego-message
- Most common: replace the Least Significant Bit (LSB)
- Each pixel in the next image is composed of 24 bits
 - 8 bits for RED, 8 for GREEN, and 8 for BLUE (RGB)
 - Lower four bits of each color, hold the upper 4 bits of the hidden picture's colors in each corresponding pixel
- Other images with more solid backgrounds would NOT provide the same level of imperceptibility
 - To maximize capacity while maintaining imperceptibility, the cover image is a consideration

Can YOU See a Difference?The Dalmatian is hiding in 4 bits of the Mandrill

You CAN See a Difference!More uniform colors in the cover is NOT effective

4

Limitations

6

Limitations

11/17/2011

7

Bit Planes

• No Hidden Image

Bit Planes

Least Significant Bits

- This particular technique substitutes image bits of one picture into another
- Both pictures must be the same size
- More typical is to substitute bits from the message one by one
 - Then, the message can be anything
- Easily detectible
 - Examine the histograms for anomalies
 - We can slice the image into bit planes

Least Significant Bits - Histograms

More Advanced Steganography

Bit-Plane Complexity Segmentation (BPCS)

- More advanced Substitution Technique
- Little less capacity
 - Harder to detect
 - Harder to extract
- Message is spread across several bit planes
 - Possibly even the Most Significant Bit (MSB) plane

I am going to skip some implementation details

- Hides in areas of image that are "complex"
 - The mandrill has a large number of complex areas
 - The dalmatian has much fewer complex areas
- The Least Significant bit plane is complex for both

- A complexity measure is taken for each 8 x 8 matrix
- No standard complexity measure
- The one used in the initial paper is a black and white border length complexity measurement
 - If the border length is long, the image is complex
 - This technique can fail
- The total length of the border is the sum of the number of black/white changes along the rows and columns
 - Remember, we are using the measure on bit planes, so every pixel is either a one or zero
 - Ex. A black pixel, surrounded by all white, has a border length of 4

- Left: A simple block with low complexity
- Right: A complex block

- α_{th} is the threshold
 - Border length over total
 - Determined to be around 0.3
 - Must be less than 0.5 (we'll see why shortly)

- If a region is complex enough, the image data is replaced by the message data
- The message data is first transformed into an 8x8 bit array, and that array is stored in place of the original data
- Does anyone see a problem during extraction?

- What if the message data itself is not complex?
 - During extraction, the region will no longer exceed the complexity threshold
 - No data will be extracted
- Must conjugate the resource data
- The 8x8 matrix is exclusive-or'd with a checkerboard pattern

Conjugation shown graphically

- The complexity of P* is $(1 \alpha_{P})$
- As long as α_{th} is less than 0.5, if P is not complex enough, P* will be
- Note: (P*)* = P → (a xor b) xor a == b
- This ensures that whenever information is embedded, the complexity will be greater than the threshold
- Now the problem is determining which regions are original data and which ones are conjugate data

- Solution!
- Reserve one bit of each region to indicate conjugation
 - Make the lower left bit of the 8x8 matrix a zero
 - If conjugation occurs, it will become a one
- This does use 1/64 of your embedding capacity
- Other solutions proposed, this is the simplest

Suggested Threshold of 0.3

Thresh=0.3, cap = 134KB/258KB

Unmodified

Thresh=0.3, cap = 134KB/258KB

11/17/2011

Lower Complexity Threshold

Thresh=0.2, cap = 163KB/258KB Thresh=0.1, cap = 193KB/258KB

11/17/2011

Lower Complexity Threshold

Less Complex Image

Thresh=0.3, cap = 106KB/258KB

Advanced Steganography

11/17/2011

Color BPCS

Thresh=0.4, cap = 405KB/769KB

Thresh=0.3, cap = 557KB/769KB

- The cover image matters!!!
- Other authors proposed better complexity measures
 - Less perceptible
 - BUT, less capacity

More Advanced Steganography

Transform Domain

Transform Domain

- Transform domain methods hide data in <u>significant</u> portions of the cover
 - as opposed to least significant
- Generally more robust to manipulation
 - affine transforms
 - scaling, rotating, shearing, translating, flipping
 - lossy compression
 - analog to digital and digital to analog conversions

Jpeg Process

Quantization Table

JPEG Process

- Converts color RGB to YC_rC_b
 - Y is the luminance component
 - C_r & C_b are the chrominance components
 - Grayscale images only have the Y component
- The image is divided into 8 x 8 blocks
- A 2-dimensional Discrete Cosine Transform (DCT) is performed on each

JPEG Process

- Results is quantized according to desired quality

 The quantization is the primary "lossy" part
- A combination of Run-Length Encoding (RLE) and Huffman coding is applied to finish the compression
 - This process is lossless
- To get the image back, the process is reversed
- The restored image is similar in appearance, but mathematically different from the original
- If high quality is used, there is little, if any, perceptible difference

- "High Capacity Data Hiding in JPEG Compressed Images"
 - Chang, C.C. and Tseng, Hsien-Wen
- An adaptive Discrete Cosine Transform, Least Significant Bit technique
 - Hides in lower and middle frequency components
 - Adapts to different characteristics of each block
 - Performs capacity estimation
- >> Greater than 1 bit per 8x8 block

- Capacity Estimation
 - Determine max number of bits that can be modified while remaining imperceptible
- Uses a capacity table based upon the quantization table
 - user sets an α (alpha) factor
 - higher α, higher bit rate, but increased distortion
 - lower frequency components hold fewer bits
 - higher frequency can hold more bits, but there are fewer

- Each table is 8x8, we'll use x,y to denote a specific element
- $C_Q(x,y) = Ig(\alpha * Q(x,y))$

Capacity based on Quantization table

- M (x,y) = lg (| D(x,y) |)
 - Capacity based on DCT coefficients
- Use the lower of these two

- Block Classification determine which blocks are better candidates for hiding
- If a background has a strong texture, the Human Visual System (HVS) is less sensitive to distortions
- Blocks divided into two classes:
 - uniform blocks
 - non-uniform blocks
- Non-uniform blocks use a larger α value (1.2 * α)
- D_x is the xth AC coefficient
- If G is below a threshold, the block is uniform

$$G = \sqrt{\sum_{x=1}^{63} (D_x)^2}$$

Embedding Algorithm:

- Set the α value
- Choose the block to be embedded
- Determine classification of block:
 - uniform, non-uniform
- Determine number of bits to hide in each quantized DCT coefficient
- Embed the data
- Apply the normal JPEG entropy coding

High Capacity Example #1 (quality=95%)

Mandrill512.bmp_q95_a8_u8.jpg ---> 71745/ 71745 22.24% of stego

11/17/2011

High Capacity Example #2 (quality=95%)

Domino512.bmp_q95_a8_u8.jpg ---> 38827 / 38827 22.07% of stego

11/17/2011

High Capacity Example #3 (quality=99%)

S2_Rocky.jpg_q99_a8_u8.jpg ---> 107643 / 107643 21.06% of stego

11/17/2011

Advanced Steganography

High Capacity Example #4 (quality=50%)

S2_Rocky.jpg_q50_a8_u8.jpg ---> 6612/ 6612 17.66% of stego

11/17/2011

Advanced Steganography

High Capacity Example #5 (quality=50%)

S2_Rocky_A.jpg_q50_a8_u8.jpg ---> **1575/ 6612** 18.81% of stego

Advanced Steganography

11/17/2011

Histograms Are Not Effective for Jpeg

Fix Your Hair and Take a Breath Now What Questions Do You Have?

 For more information or the actual software contact me @ <u>John.Ortiz@Harris.com</u>

PLEASE COMPLETE PRESENTATION EVALUATIONS